Topologist's Sine Curve

October 10, 2012

Let $\Gamma=\left\{(x, y): 0<x \leq 1, y=\sin \left(\frac{1}{x}\right)\right\} \cup\{(0, y):|y| \leq 1\}$
Theorem 1. Γ is not path connected.
Proof. Suppose $f(t)=(a(t), b(t))$ is a continuous curve defined on $[0,1]$ with $f(t) \in \Gamma$ for all t and $f(0)=(0,0), f(1)=\left(\frac{1}{\pi}, 0\right)$. Then by the intermediate value theorem there is a $0<t_{1}<1$ so that $a\left(t_{1}\right)=\frac{2}{3 \pi}$. Then there is $0<t_{2}<t_{1}$ so that $a\left(t_{2}\right)=\frac{2}{5 \pi}$. Continuing, we get a decreasing sequence t_{n} so that $a\left(t_{n}\right)=\frac{2}{(2 n+1) \pi}$. It follows that $b\left(t_{n}\right)=(-1)^{n}$. Now since t_{n} is a decreasing sequence bounded from below it tends to limit $t_{n} \rightarrow c$. Since f is continuous $\lim f\left(t_{n}\right)$ must exist. But $\lim _{n \rightarrow \infty} b\left(t_{n}\right)$ does not exist.

