Topologist's Sine Curve

October 10, 2012

Let $\Gamma = \{(x, y) : 0 < x \le 1, y = \sin(\frac{1}{x})\} \cup \{(0, y) : |y| \le 1\}$

Theorem 1. Γ is not path connected.

Proof. Suppose f(t) = (a(t), b(t)) is a continuous curve defined on [0, 1] with $f(t) \in \Gamma$ for all t and $f(0) = (0, 0), f(1) = (\frac{1}{\pi}, 0)$. Then by the intermediate value theorem there is a $0 < t_1 < 1$ so that $a(t_1) = \frac{2}{3\pi}$. Then there is $0 < t_2 < t_1$ so that $a(t_2) = \frac{2}{5\pi}$. Continuing, we get a decreasing sequence t_n so that $a(t_n) = \frac{2}{(2n+1)\pi}$. It follows that $b(t_n) = (-1)^n$. Now since t_n is a decreasing sequence bounded from below it tends to limit $t_n \to c$. Since f is continuous $\lim f(t_n)$ must exist. But $\lim_{n\to\infty} b(t_n)$ does not exist.